Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream.

Identifieur interne : 003B11 ( Main/Exploration ); précédent : 003B10; suivant : 003B12

Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream.

Auteurs : J S Kominoski [États-Unis] ; C M Pringle ; B A Ball ; M A Bradford ; D C Coleman ; D B Hall ; M D Hunter

Source :

RBID : pubmed:17536403

Descripteurs français

English descriptors

Abstract

Since species loss is predicted to be nonrandom, it is important to understand the manner in which those species that we anticipate losing interact with other species to affect ecosystem function. We tested whether litter species diversity, measured as richness and composition, affects breakdown dynamics in a detritus-based stream. Using full-factorial analyses of single- and mixed-species leaf packs (15 possible combinations of four dominant litter species; red maple [Acer rubrum], tulip poplar [Liriodendron tulipifera], chestnut oak [Quercus prinus], and rhododendron [Rhododendron maximum]), we tested for single-species presence/absence (additive) or species interaction (nonadditive) effects on leaf pack breakdown rates, changes in litter chemistry, and microbial and macroinvertebrate biomass. Overall, we found significant nonadditive effects of litter species diversity on leaf pack breakdown rates, which were explained both by richness and composition. Leaf packs containing higher litter species richness had faster breakdown rates, and antagonistic effects of litter species composition were observed when any two or three of the four litter species were mixed. Less-consistent results were obtained with respect to changes in litter chemistry and microbial and macroinvertebrate biomass. Our results suggest that loss of litter species diversity will decrease species interactions involved in regulating ecosystem function. To that end, loss of species such as eastern hemlock (Tsuga canadensis) accompanied by predicted changes in riparian tree species composition in the southeastern United States could have nonadditive effects on litter breakdown at the landscape scale.

DOI: 10.1890/06-0674
PubMed: 17536403


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream.</title>
<author>
<name sortKey="Kominoski, J S" sort="Kominoski, J S" uniqKey="Kominoski J" first="J S" last="Kominoski">J S Kominoski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Ecology, University of Georgia, Athens, Georgia 30602, USA. jkominoski@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Ecology, University of Georgia, Athens, Georgia 30602</wicri:regionArea>
<wicri:noRegion>Georgia 30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pringle, C M" sort="Pringle, C M" uniqKey="Pringle C" first="C M" last="Pringle">C M Pringle</name>
</author>
<author>
<name sortKey="Ball, B A" sort="Ball, B A" uniqKey="Ball B" first="B A" last="Ball">B A Ball</name>
</author>
<author>
<name sortKey="Bradford, M A" sort="Bradford, M A" uniqKey="Bradford M" first="M A" last="Bradford">M A Bradford</name>
</author>
<author>
<name sortKey="Coleman, D C" sort="Coleman, D C" uniqKey="Coleman D" first="D C" last="Coleman">D C Coleman</name>
</author>
<author>
<name sortKey="Hall, D B" sort="Hall, D B" uniqKey="Hall D" first="D B" last="Hall">D B Hall</name>
</author>
<author>
<name sortKey="Hunter, M D" sort="Hunter, M D" uniqKey="Hunter M" first="M D" last="Hunter">M D Hunter</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2007">2007</date>
<idno type="RBID">pubmed:17536403</idno>
<idno type="pmid">17536403</idno>
<idno type="doi">10.1890/06-0674</idno>
<idno type="wicri:Area/Main/Corpus">003B42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003B42</idno>
<idno type="wicri:Area/Main/Curation">003B42</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003B42</idno>
<idno type="wicri:Area/Main/Exploration">003B42</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream.</title>
<author>
<name sortKey="Kominoski, J S" sort="Kominoski, J S" uniqKey="Kominoski J" first="J S" last="Kominoski">J S Kominoski</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Ecology, University of Georgia, Athens, Georgia 30602, USA. jkominoski@gmail.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Institute of Ecology, University of Georgia, Athens, Georgia 30602</wicri:regionArea>
<wicri:noRegion>Georgia 30602</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pringle, C M" sort="Pringle, C M" uniqKey="Pringle C" first="C M" last="Pringle">C M Pringle</name>
</author>
<author>
<name sortKey="Ball, B A" sort="Ball, B A" uniqKey="Ball B" first="B A" last="Ball">B A Ball</name>
</author>
<author>
<name sortKey="Bradford, M A" sort="Bradford, M A" uniqKey="Bradford M" first="M A" last="Bradford">M A Bradford</name>
</author>
<author>
<name sortKey="Coleman, D C" sort="Coleman, D C" uniqKey="Coleman D" first="D C" last="Coleman">D C Coleman</name>
</author>
<author>
<name sortKey="Hall, D B" sort="Hall, D B" uniqKey="Hall D" first="D B" last="Hall">D B Hall</name>
</author>
<author>
<name sortKey="Hunter, M D" sort="Hunter, M D" uniqKey="Hunter M" first="M D" last="Hunter">M D Hunter</name>
</author>
</analytic>
<series>
<title level="j">Ecology</title>
<idno type="ISSN">0012-9658</idno>
<imprint>
<date when="2007" type="published">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acer (classification)</term>
<term>Acer (growth & development)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Biodiversity (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Food Chain (MeSH)</term>
<term>Fresh Water (MeSH)</term>
<term>Hemlock (growth & development)</term>
<term>Liriodendron (classification)</term>
<term>Liriodendron (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Population Dynamics (MeSH)</term>
<term>Quercus (classification)</term>
<term>Quercus (growth & development)</term>
<term>Rhododendron (classification)</term>
<term>Rhododendron (growth & development)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acer (classification)</term>
<term>Acer (croissance et développement)</term>
<term>Biodiversité (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Chaine alimentaire (MeSH)</term>
<term>Ciguë (croissance et développement)</term>
<term>Dynamique des populations (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Eau douce (MeSH)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Liriodendron (classification)</term>
<term>Liriodendron (croissance et développement)</term>
<term>Quercus (classification)</term>
<term>Quercus (croissance et développement)</term>
<term>Rhododendron (classification)</term>
<term>Rhododendron (croissance et développement)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Acer</term>
<term>Liriodendron</term>
<term>Quercus</term>
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Acer</term>
<term>Ciguë</term>
<term>Liriodendron</term>
<term>Quercus</term>
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Acer</term>
<term>Hemlock</term>
<term>Liriodendron</term>
<term>Quercus</term>
<term>Rhododendron</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Biodiversity</term>
<term>Biomass</term>
<term>Ecosystem</term>
<term>Food Chain</term>
<term>Fresh Water</term>
<term>Population Dynamics</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Acer</term>
<term>Biodiversité</term>
<term>Biomasse</term>
<term>Chaine alimentaire</term>
<term>Dynamique des populations</term>
<term>Dépollution biologique de l'environnement</term>
<term>Eau douce</term>
<term>Liriodendron</term>
<term>Quercus</term>
<term>Rhododendron</term>
<term>Spécificité d'espèce</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since species loss is predicted to be nonrandom, it is important to understand the manner in which those species that we anticipate losing interact with other species to affect ecosystem function. We tested whether litter species diversity, measured as richness and composition, affects breakdown dynamics in a detritus-based stream. Using full-factorial analyses of single- and mixed-species leaf packs (15 possible combinations of four dominant litter species; red maple [Acer rubrum], tulip poplar [Liriodendron tulipifera], chestnut oak [Quercus prinus], and rhododendron [Rhododendron maximum]), we tested for single-species presence/absence (additive) or species interaction (nonadditive) effects on leaf pack breakdown rates, changes in litter chemistry, and microbial and macroinvertebrate biomass. Overall, we found significant nonadditive effects of litter species diversity on leaf pack breakdown rates, which were explained both by richness and composition. Leaf packs containing higher litter species richness had faster breakdown rates, and antagonistic effects of litter species composition were observed when any two or three of the four litter species were mixed. Less-consistent results were obtained with respect to changes in litter chemistry and microbial and macroinvertebrate biomass. Our results suggest that loss of litter species diversity will decrease species interactions involved in regulating ecosystem function. To that end, loss of species such as eastern hemlock (Tsuga canadensis) accompanied by predicted changes in riparian tree species composition in the southeastern United States could have nonadditive effects on litter breakdown at the landscape scale.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">17536403</PMID>
<DateCompleted>
<Year>2007</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0012-9658</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>88</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2007</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Ecology</Title>
<ISOAbbreviation>Ecology</ISOAbbreviation>
</Journal>
<ArticleTitle>Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream.</ArticleTitle>
<Pagination>
<MedlinePgn>1167-76</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Since species loss is predicted to be nonrandom, it is important to understand the manner in which those species that we anticipate losing interact with other species to affect ecosystem function. We tested whether litter species diversity, measured as richness and composition, affects breakdown dynamics in a detritus-based stream. Using full-factorial analyses of single- and mixed-species leaf packs (15 possible combinations of four dominant litter species; red maple [Acer rubrum], tulip poplar [Liriodendron tulipifera], chestnut oak [Quercus prinus], and rhododendron [Rhododendron maximum]), we tested for single-species presence/absence (additive) or species interaction (nonadditive) effects on leaf pack breakdown rates, changes in litter chemistry, and microbial and macroinvertebrate biomass. Overall, we found significant nonadditive effects of litter species diversity on leaf pack breakdown rates, which were explained both by richness and composition. Leaf packs containing higher litter species richness had faster breakdown rates, and antagonistic effects of litter species composition were observed when any two or three of the four litter species were mixed. Less-consistent results were obtained with respect to changes in litter chemistry and microbial and macroinvertebrate biomass. Our results suggest that loss of litter species diversity will decrease species interactions involved in regulating ecosystem function. To that end, loss of species such as eastern hemlock (Tsuga canadensis) accompanied by predicted changes in riparian tree species composition in the southeastern United States could have nonadditive effects on litter breakdown at the landscape scale.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kominoski</LastName>
<ForeName>J S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Institute of Ecology, University of Georgia, Athens, Georgia 30602, USA. jkominoski@gmail.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pringle</LastName>
<ForeName>C M</ForeName>
<Initials>CM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ball</LastName>
<ForeName>B A</ForeName>
<Initials>BA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bradford</LastName>
<ForeName>M A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Coleman</LastName>
<ForeName>D C</ForeName>
<Initials>DC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>D B</ForeName>
<Initials>DB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hunter</LastName>
<ForeName>M D</ForeName>
<Initials>MD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecology</MedlineTA>
<NlmUniqueID>0043541</NlmUniqueID>
<ISSNLinking>0012-9658</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031002" MajorTopicYN="N">Acer</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044822" MajorTopicYN="Y">Biodiversity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020387" MajorTopicYN="N">Food Chain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005618" MajorTopicYN="Y">Fresh Water</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018652" MajorTopicYN="N">Hemlock</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031567" MajorTopicYN="N">Liriodendron</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011157" MajorTopicYN="N">Population Dynamics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029963" MajorTopicYN="N">Quercus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029793" MajorTopicYN="N">Rhododendron</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2007</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2007</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2007</Year>
<Month>6</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">17536403</ArticleId>
<ArticleId IdType="doi">10.1890/06-0674</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Ball, B A" sort="Ball, B A" uniqKey="Ball B" first="B A" last="Ball">B A Ball</name>
<name sortKey="Bradford, M A" sort="Bradford, M A" uniqKey="Bradford M" first="M A" last="Bradford">M A Bradford</name>
<name sortKey="Coleman, D C" sort="Coleman, D C" uniqKey="Coleman D" first="D C" last="Coleman">D C Coleman</name>
<name sortKey="Hall, D B" sort="Hall, D B" uniqKey="Hall D" first="D B" last="Hall">D B Hall</name>
<name sortKey="Hunter, M D" sort="Hunter, M D" uniqKey="Hunter M" first="M D" last="Hunter">M D Hunter</name>
<name sortKey="Pringle, C M" sort="Pringle, C M" uniqKey="Pringle C" first="C M" last="Pringle">C M Pringle</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Kominoski, J S" sort="Kominoski, J S" uniqKey="Kominoski J" first="J S" last="Kominoski">J S Kominoski</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003B11 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003B11 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:17536403
   |texte=   Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:17536403" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020